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occurs with the changes in. specimen thickness and 
defocus (Hirabayashi, Hiraga & Shindo 1981; Hiraga 
et al., 1981). The image of Fig. 7 shows intergrowth of 
the Au4Mn, Au22Mn 6 and Aua~Mn 9 structures, where 
the respective unit ceils are outlined. The appearance of 
the Au31Mn 9 structure is not surprising, because this 
structure is formed when the Au-20.7 at.% Mn alloy is 
annealed at 673 K as reported in part I. It is noted that 
the Au31Mn9 structure exists at intersections of the 
three-dot columns aligned parallel to the two orthog- 
onal directions [210] and [1201. This is reasonably 
understood because the Au31Mn 9 structure is composed 
of square-shaped islands of the Au4Mn structure and 
the islands are separated by 2d-APB along the two 
orthogonal directions as described in part I. 

The image of Fig. 8 shows a random appearance of' 
butterfly-shaped spots in the surrounding area of Fig. 7. 
These spots began to appear after electron irradiation 
for several hundred seconds, and grew with the 
irradiation time. The Mn-atom rows cannot be 
recognized in the dark spots, but are clearly seen along 
the middle lines between the paired spots. These lines 
are the so-called 'line of no contrast' in the image of the 
dislocation loops. The line of no contrast lies along the 
direction [ 110] or [ i 10] as indicated by arrows. This is 
also the case in Fig. 5. The dark spots are ascribed to 
strain field around dislocation loops lying on {111} 
planes, of which the diameter is estimated as 10-30/k. 
Similar dark spots have been observed in the previous 
study (Hirabayashi, 1980; Terasaki et al., 1981). 
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Abstract 

Symmetrized multipole formalism, in diffraction studies 
of orientationally disordered molecular crystals, is 
generalized to include coupling between orientations 
and translations of a rigid body and anharmonicity in 
the center-of-mass motion. This generalized formalism 
is intended for use with direct multipole analysis of the 

observed form factors. In the relationships between the 
radial multipole coefficients of the dynamic and static 
density, correlations cause a mixing in the multipole 
order. In the dynamic form factor the parameters 
describing the coupling are linear combinations of the 
multipole expansion coefficients of the corresponding 
rigid-body distribution. Parameters describing anisot- 
ropy are directly the multipole expansion coefficients 
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of the rigid-body center-of-mass distribution. As an 
example of the formalism, neutron diffraction data 
from cubic KCN, NaCN, KOD, NaOD and CBr 4 and 
rhombohedral RbNO 3 are reanalyzed with direct 
multipole analysis. In these examples the importance of 
coupling seems to grow with the complexity of the 
crystal. 

1. Introduction 

In diffraction studies of orientationally disordered 
molecular crystals it is often assumed as a first 
approximation that the molecule behaves as a rigid 
body and that there are ~ao correlations between the 
orientational and translational motion. 

If infrared and Raman spectroscopic data are 
available, one can estimate the contribution from the 
internal modes and the validity of the first approxi- 
mation (cf. Willis & Pryor, 1975, Ch. 6). For small 
atomic displacements the orientation-translation coup- 
ling is described with the TLS matrix formalism of 
Schomaker & Trueblood (1968). The S matrix takes 
into account correlations in the quadratic approxi- 
mation, and is therefore zero when the site symmetry is 
i. In general S is an asymmetric matrix with eight 
independent elements. 

In orientationally disordered molecular crystals the 
molecules are often undergoing hindered rotation. 
Consequently, the atoms do not have well-defined 
equilibrium positions with respect to which the 
matrices T, L and S could be calculated. Because of 
this large libration amplitude orientation-translation 
coupling might be of importance in these materials. 
For higher symmetries with large molecules, such as 
cubic CBr 4, coupling could be a consequence of the 
steric hindrance. In more complex symmetries, such as 
rhombohedral RbNO 3, coupling is already evident 
from geometrical reasons. 

In these crystals the pure orientational problem is 
appreciated with the symmetrized multipole formalism 
(Kara & Kurki-Suonio, 1981, hereafter referred to as 
I). In this formalism the experimental information is 
parametrized with the multipole expansion coefficients 
of the orientational probability density function of the 
molecule. These coefficients determine also the libration 
matrices, which transform the static radial densities 
into dynamic ones. This connection makes the formal- 
ism useful for direct multipole analysis and for 
combined charge and nuclear density studies. 

It is also possible to include in the multipole method 
the effect of internal vibrations, independent of the 
external motion (Kurki-Suonio, Merisalo, Vahvaselk~i 
& Larsen, 1976). 

The multipole method has been generalized to 
include orientation-translation coupling for cubic sites 
by Press, Grimm & Hfiller (1979). 

This paper aims towards a generalization from 
distribution function f(oJ) for f(og, R) using multipole 
representations. It includes orientation-translation 
coupling and center-of-mass anharmonicity for all body 
and site symmetries. The influence of this 
generalization on the relationship between the static 
and dynamic radial densities is studied for various 
approximations. This formalism is then applied, 
together with the direct multipole analysis, for several 
examples typical among orientationally disordered 
molecular crystals. 

The predecessor and basic reference for this work is 
I, from which symbols and procedures are here largely 
adopted. 

2. Probability distribution of rigid-body motions 

The dynamic molecular form factor F(S), obtained 
from coherent elastic scattering experiments, is the 
Fourier transform of the dynamic density prR(r), 

F ( S ) =  f exp (2zcS. r)prR(r) dr, (1) 

where S is the scattering vector for Bragg diffraction. In 
the rigid-body approximation, the dynamic density and 
the static density a(r) are related by the probability 
distribution f (o9, R), 

prR(r) = fy f(og, R)/~(oJ) T(R) o(r) dogdR, (2 )  

where g(og) denotes rotation about the center of mass 
through the Euler angles 09 = a, fl, y and f'(R) denotes 
the translation of the center of mass of the rigid body. 
Here these two operations commute. 

The static density a(r) describes the molecule at rest, 
when the dynamic density is the corresponding ob- 
served time-averaged distribution of the body in motion. 
Rigid-body approximation means that the internal 
motion does not contribute to parR(r) or that it gives a 
separable contribution. 

The integrations in (2) are over all rotations and 
translations, i.e. 

27t rr 2yt 

f f009dR= f f f das inf ldf ldy 
o 0 o 

oo rt 2~t 

× f f f R E dR sin0d0dtp. 
o o o  

f(6o, R) is the probability distribution of rotational and 
translational displacements of the molecule, hence it is 
non-negative f >_ 0 and normalized f~ f(og,R)do9 dR = 
1. Furthermore, the site symmetry imposes certain 
limitations on its nature. They can be defined generally 
by the statement f(og, R) is site symmetric if for any 
static density o(r) the corresponding dynamic density 
prR(r) is site symmetric (cf. I). 

When the rotational and translational degrees of 
freedom are independentf(og,R) is 

f(og, R) = f(og) r(R). (3) 
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In this case the dynamic density becomes 

pr,(r) = f r(R) f'(R) pR(r) dR = f r(R) p,(r ' )  dR, (4) 

where r' = r - R and the rotational dynamic density 
p~(r) is 

pR(r) = ff(o))/~(o)) e(r) do). (5) 

f(o))  and r(R) are the orientational and translational 
probability distributions of the molecule, respectively. 
In general these two distributions are 

f(o)) = f f(o),R) dR (6a) 

,(R) = ff(o),R) do). (6b) 

The uncorrelated approximation is now defined as 

f0(o),R) = f(o)), x(R). (7) 

We can also quite generally expressf(o),R) in either of 
the two forms 

f(o),R) = f(o)) re(RI o)), (8a) 

f(o),R) = x(R) f¢(o)l R), (80) 

where rC(RIo)) is the conditional probability for the 
center of mass to be at R, if the orientation of the 
molecule is o). 

fe(o)l R) is the conditional probability for finding the 
molecule in orientation o), if its center of mass is 
displaced to R. The conditional probability fc(o)lR) 
defines the rotational dynamic density 

PR(r;R) = ffc(o)IR)/~(o)) e(r) do), (9) 

where the center-of-mass position R occurs as a 
parameter. The final dynamic density is now 

prR(r) = f x(R) ~(R)pR(r;R) dR = f x(R)pR(r';R) dR. 
(10) 

Correspondingly re(Rio)) defines the translational 
dynamic density 

pr(r;o)) = f re(Rio)) f'(R) a(r) dR 

= f re(Rio)) e(r ')  dR, ( l l )  

where the Euler angles co of the orientation of the 
molecule are parameters. The final dynamic density is 
then 

pr,(r) = f f(o)) R(o)) Pr(r;o)) do). (12) 

Representations (8)-(12) are not practically very 
useful. They are given here only to relate the treatment 
to the earlier work I. In the above equationsf(o),R) and 
prR(r) are necessarily always site symmetric. From the 
definition of the site symmetry off(o),R) it follows (this 
is proved later) that x(R) and f(o)) are site symmetric. 
In the uncorrelated approximation (7) fro)) and x(R) 
are, of course, always site symmetric.fe(o)IR), pR(r;R), 
re(Rio)) and Pr(r;o)) are lower than site symmetric, 
since they are defined at an arbitrary center-of-mass 
position and orientation of the molecule. 

3. The multipole formalism 

(A) Representation for the orientational distribution 

In I we introduced the basis {C~rmp(o))} for the 
representation of the orientational distribution 

f (o)) ~ , t = anrmp Cnrmp(o) ). (13) 
lnrmp 

o -- 1 /8n  2 corresponds to free The first term ao+0+ - 
rotations. These real rotator functions have the 
normalization 

.I {Clrmp(U))} 2 d o ) =  8n2/2l + 1. (14) 

They define the transformation properties of the 
normalized real spherical harmonics under rotation. 

In this basis, in the case of independent rotations and 
translations and for the uncorrelated approximation, 
the body and site symmetry are easily taken into 
consideration. When the static density and the rotatio- 
nal dynamic density are represented by the multipole 
expansions, 

a(r) = • etmp(r ) Ylmp(~,(O ) (15) 
Imp 

PRO') = Z [fflnr(r)Ylnr(O,~) ( 1 6 )  
lnr 

and substituted in (5), their radial terms are related by 
the libration matrices B t = [(8nz/2/+ 1) a,rz p t  ], 

~( r )  = B, at(r ). (17) 

The index rules for the indices lmp, for the body- 
symmetric static density, and for the indices Inr, for the 
site-symmetric dynamic rotational density, apply also 
to the body- and site-symmetric orientational distri- 
bution. 

In the presence of orientation-translation cor- 
relations, the conditional distribution fe(o)lR) enters 
with the multipole representation 

fe(o)lR) ~ t l = anrmp(R)Cnrmp(o) ). (18) 
lnrmp 

The radial terms of the static density are now related, 
through (9), to the radial terms of the rotational 
dynamic density pR(r;R) by position-dependent lib- 
ration matrices BI(R ) = [(8n2/2l + 1)alnrmp(R)], 

~ ( r ;R)  = B/(R) a t ( r  ). (19) 

At this stage these position-dependent libration 
matrices contain more elements than the constant 
matrices Bt = Bt (R = O) in (17), because PR(r;R) is 
lower than site symmetric. But, since x(R) is site 
symmetric fe(o)lR) is site symmetrized in the con- 
volution integral (10). 
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All the above results are also valid for cubic site 
symmetry  and for cubic and icosahedral body sym- 

metries, when the corresponding rotators are employed 
(cf. I). 

f ( o ~ )  = i & {  f R 2 o ! Clrmp(09) o+ A ,,rrnp( R ) dR 
0 

(26) 

(B) Representation for  the translational d&tribution 

Small translational anisotropy can be adequately 
described using the real spherical harmonics as a basis 
for the representation of r(R), 

r ( R ) =  Z rtuv(R)Ytuv(OR,(PR) • (20) 
tuv 

These spherical harmonics have the normalization 

~t 2z~ 

f f Ytuv(0,~p)2 sin 0d0drp= 1. (21) 
0 0 

Normalization of the translational distribution itself 
imposes the following condition on the radial terms 

oo 

V/-4-~,f R 2 Zoo+(R) dR = 1. (22) 
0 

Whatever radial basis is used for the representation of 
rtuv(R ), the site symmetry of z(R) is defined by selection 
rules of the indices tuv (Kurki-Suonio, Merisalo & 
Peltonen, 1979). In cubic site symmetries the Ytu~ 
combine to form the cubic harmonics g t, u" 

For strongly anharmonic translations representation 
(20) is not very useful, since then too many parameters 
are needed. 

(C) Representation for  the orientational-translational 
distribution 

The above two bases can be combined to give a 
product basis for the representation off(og,R): 

f(og, R) Z Z t l = u~Anrmp(R)Ytuv(OR,~oR) Ctnnnp(to). (23) 
tuv lnrrap 

In this formalism this basis will lead to more simple 
symmetry arguments concerning the total distribution 
than any other combination; i.e. with this choice we get 
to the structure-factor product of two real spherical 
harmonics, which is easy to symmetrize. The expansion 
coefficients fulfil the normalization condition 

oo 
8 ~ V ~  f R ~ o o o+Ao+o+(R) dR = 1. (24) 

0 

If rotations and-translations are independent, we have 

u~A~rmp(R) = alnrmp rtuv(R ). (25) 

The g-enera-lized rotational and translational distri- 
butions are, according to their definitions (6), 

t 0 ,(R) = Z {8 x2 u~10+0+ (R)}mYtuv(OR, (oh). (27) 
tuv 

Thus multipole expansion coefficients of the uncor- 
related approximationf0(og,R) are 

t 1 7[2V/~u~AO+0+(R) ~ R 2  o l o+Anrmp(R) d R .  u~B nrmp( R ) = 8 
0 

(28) 

For angle-independent distribution these are equal to 
the original expansion coefficients 

= u~A0+0+(R), (29) u~BO+o+(R) t O 

and there are therefore no correlations; this is trivial. If 
for anisotropic or isotropic vibrations the expansion 
coefficients all fulfil the condition 

l t 0 u~l l rmp(R)  = t l  nrmp u~Ao+o+(R), (30) 

rotations and translations are again uncorrelated, 

u~Blrmp(R) : t l u~l,,~p(R). (31) 

Those expansion coefficients u~Alrmp(R) of f (w,R) 
which do not fulfil the condition (30) describe rotation- 
translation correlations. In particular, for spherical 
vibrations there can also be correlations if 0 t o+Anrmp(R) 
do not fulfil (30). 

It should be noted that indices tuv and lnr inf0(w,R) 
are determined, separately, by the site symmetry, since 
both x(R) and f(w) are site symmetric. For these 
expansion coefficients condition (30) is natural since it 
then becomes equal to (25). 

4. The structure factor 

Because this formalism is mainly intended for use with 
the direct multipole analysis (Ahtee, Kurki-Suonio, 
Lucas & Hewat, 1979) of the observed form factors, 
we shall next study the relationship between the 
multipole expansions for the static density and the final 
dyamie density in reciprocal space. There we have 
schematically 

F(S)  

x(R) f(og) or Bt 
f 0 ( s ) ,  

f(w,R) 

f(~o) ~(Rl~o) 
.- ; T(S;~o), 
x(R) ff(oglR) or Bt(R) 

.- ; f ( S ; R ) ,  

' ~ g(S). 

,~, 

(32a) 

(32b) 

(32c) 

(32d) 
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These equations illustrate how, for the different 
rigid-body distributions introduced in{} 2, the static 
form factor g(S) relates to the final dynamic form 
factor F(S). F(S) and g(S) are Fourier transforms of 
the final dynamic density prk(r) and the static density 
tr(r), respectively. T(S) and f (S)  are the temperature 
factor and rotational form factor, Fourier transforms of 
the translational dynamic density and rotational 
dynamic density, respectively. The last two relatioris 
(32c) and (32d) are given to show the meaning of the 
conditional distributions and that these distributions are 
not practically very useful. 

In multipole formulation of the problem the dynamic 
molecular form factor in cases (32a) and (32b) are 

F0(S ) = Y Tt, v(S) Y,,vCOs,(Os) Zft,,r(S) Y,,,r(Os,tPs) 
tuv Inr 

(33a) 

F(S) = Y Y tuvFinr(S) ytu.(Os,~Os) Ylnr(Os,~Os). (33b) 
tuv  lnr 

The radial terms are the Fourier-Bessel trans- 
formations 

Ttuv (S )  = 4 m  t °~ rtuv(R)jt(2zcSR) R2 dR (34a) 
o 

f t ,  r(S) Y (8zc2/2l + 1) l = a,,rm p glrap(S) 
rap 

or  ft(S) = B ! g l ( S )  

tuvFlnr(S) ~-- ~ (81r2/2l + 1) 4zri t 
rap 

oo 

x f u~Alnrmp(R)jt(2zcSR) R 2 dR getup(S), 
0 

(34b) 

where fl and gt denote vectors and 

oo 
gtmp(S) = 4z~i I f Otmp(r)jl(2rcrS) r 2 dr (35) 

0 

is a radial multipole expansion coefficient of the static 
form factor g(S): 

g(S)  = Z g l m p ( S )  Ytrap(Os,(Os) • (36)  
lrap 

The molecular form factor has the site-symmetric 
multipole expansion 

F ( S )  = ~ Flnr(S ) Ytnr(Os,tPS). (37) 
lnr 

The uncorrelated part of (33b) is of the form O3a), i.e. 
products of two site-symmetric terms, and therefore 
necessarily of the site-symmetric form (37). The 

correlated part of (33b), and of f(to,  R), is site 
symmetric if the sum over products of two real 
spherical harmonics weighted with n,~Ft,,r(S) reduces to 
the site-symmetric form (37). In general, site symmetri- 
zation of these terms can be done by using the coupling 
rule for spherical harmonics together with the index- 
picking rules given for them in I (cf. Rose, 1957, Ch. 
10). 

The body symmetry of F(S) and f(og,R) comes 
always from the body-symmetric index rules con- 
cerning indices lmp in the body-symmetric static 
density. 

The site symmetry of f(w) and x(R), in general, is 
proved in the following way: In F(S) terms with 
different (t,l) values are linearly independent, since they 
have different radial behavior. From the definition of 
the site symmetry off(og, R) it follows that F(S) must 
be site symmetric for arbitrary glm;(S). This stipulates 
that each partial sum in (33b), with different (t,l) 
values, must be site symmetric. In particular, it follows 
that when t - 0 or l = 0 these partial sums must 
separately be site symmetric, and therefore f and x are 
site symmetric. 

Solvability o f f  (og, R) by direct multipole analysis 
In the presence of correlations the number of 

parameters in the dynamic form factor is large, and 
therefore a fit is not a very good method for their 
solution. 

Direct multipole analysis determines each radial 
term Fl, r(S ) directly and independently from the 
observed F(hkl) values (Ahtee et al., 1979), and gives 
thus a more reliable method for obtaining information 
about f(w,R),  especially about its multipole expansion 
coefficients. 

The different possible physical situations are given in 
A, B, C, D below. 

A. Angle-independent distribution. Each Ft,,~(S ) 
gives direct information about the center-of-mass 
motion of the molecule, 

Ft,r(S) = Tt,r(S)(l/v/-4~)goo+(S). (38) 

B. Isotropic harmonic vibrations uncoupled to 
rotations. Each observed Ftnr(S ) is now simply a sum 
of spherical Bessel functions of the same multipole 
order l, weighted with the Debye-Waller factor 

Ftnr(S) = DWF(87r2/21 + 1) ~ t a n r m p g l r a p ( S ) .  (39) 
mp 

For high body symmetries the low multipole order 
coefficients t anrmp can be solved, since there is then only 
one term in the sum (cf. I). 

C. Anisotropic vibrations uncoupled to rotations. 
Each Ft, r(S ) is a sum of gtrap(S) terms of different 
site-symmetric multipole orders, weighted with the 
integral (34a). If both r(R) andf(og) converge rapidly, 
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their multipole expansion coefficients are separable (cf. 
Examples). 

D. Orientation-translation correlations. Ftnr(S) is a 
combination of different body-symmetric glmp(S) terms, 
weighted with the integral in (34b). All body-symmetric 
glmp(S) terms can contribute to Fl,n,r,(S ) at each 
multipole order l' separately. But naturally most 
significant are those terms gtmp(S) where l < l'. This 
emphasizes the significance of high molecular sym- 
metry for the convergence of the correlated part of 
F(S). On the other hand, for each (t,l) value the number 
of terms in F(S) describing correlations depends on the 
site symmetry. Therefore, high site symmetry is also 
important for the convergence of the correlated part of 
F(S). 

The multipole expansion coefficients of J'(tn, R) 
describing correlations cannot be solved separately. 
Coupling appears quantitatively only as a correction in 
the orientational parameters t anrmp" 

5. Examples 

In the following examples the stationary wave functions 
of an isotropic harmonic oscillator are used as the 
radial basis for f(og, R) and r(R) (cf. Kurki-Suonio et 
al., 1979). 

Linear ion at cubic m3m site 
M + ( X Y )  - compounds, where a linear ion is at a 

cubic m3m site, form an extended group of 
orientationally disordered molecular crystals. In the 
rigid-body approximation the static radial form factors 
become 

glmp( S) = 4 nit Ylmv( ho ko lo) 

X {gxjt(2nSrl) + grjl(2nSr2)}, (40) 

where (h 0 k 010) is the at-rest orientation of the X Y -  ion, 
(100) for example, gx and gy are the scattering lengths 
of X and Y atoms, respectively, and r~ and r z are their 
distances to the center of mass of the ion.jr(x) are the 
spherical Bessel functions. For a symmetric linear 
molecule 1 would be even because of the inversion 
symmetry. In the structure factor, terms deriving their 
origin from the uncorrelated probability distribution are 

= 2n(Uxy ) , of the form, bxy 2 1/2 

R l i t exp (-½b2xy S2){gxJt(ZnSrl) 

+ gyjl(2nSr2)}Kn(Os,~Ps) (41) 

up to l = 10. For a linear ion the multipole expansion 
for f(og) in terms of cubic site - non-cubic body 
rotators (el  I) reduces to 

f(O4p) = ~ RtKn(O4P), (42) 
l 

where Ro = 1/V/~.  Lowest-order terms deriving their 

origin from the anharmonic translational probability 
distribution of the dipole are 

B~ exp (-½b2xy $ 2 ) { ~ -  ~b2xy S 2 + ½(bxyS) 4 } 

x {g~jo(2nSr~) + gyjo(2nSr2)} Kol(O s, (Os), (43a) 

(-~bxy SZ)(bxy S)4{g~jo(2nSrl) + gyjo(2nSr2)} B 2 exp ~ 2 

x K41(Os, ~Os), (43b) 

B 3 exp (-½b2xyS2)(bxy S)6{gxJo(2nSrl) + gyjo(2nSr2)} 

x K6~(Os,q~s), (43c) 

where 

and 

= 2 1/2 3 

B, = -  66: v/E( ( uL )1,2),. 

The first two coupling terms come from the products 
tel (33b)1 

lluvA~n Yluv(Os, ~Os)Y3nr(Os,~Os) = al K4~(Os,~Os) 
IgpnF 

(44) 
7 11uva,rlY ~uv( Os,~°s) YTnr( Os,~°s) 

IdPnr 

= a2 K61(Os,~Os) + a3 Ksl(Os#Ps), (45) 

where oh is a linear combination of the five different 
coefficients 11uvA3nrl and a2 and a 3 are different linear 

l luvAnrl  • combinations of the eight possible coefficients 7 
In the structure factor these coupling terms are 

R T  1 exp (-½b2xy S2)(bxy S){gxJ3(2nSra) + gyja(2nSr2)} 

x K4~(Os,~Os), (46) 

exp (-½b2xy S2)(bxy S){gxJT(2nSr~) + gyjT(2nSr2)} 

x {RT2K6~(Os,~Os) + R T  a Ks~(Os,~Os)}, (47) 

respectively. 
For a symmetric linear molecule the first coupling 

term comes from the product 

y 2 
22uv A nrmp Y2uv( O$,~Os) Y2nr( Os,~Os) 

upnr 

= fl, Kol(Os4Ps ) + f12K41(Os, tps), (48) 

where fl~ and fie are different linear combinations of the 
five possible coefficients 2 22uvanrmp. In the structure 
factor the corresponding term is 

exp (-½b2xr S2)(bxy S)2{gxJ2(2nSrl) + gyJ2(2nSr2)} 

× {RT 1Ko~(Os,~Os) + R T  2 K41(Os,CPs)}. (49) 

Compared to (46)-(47) this term is quadratic in the 
center-of-mass displacements, because of higher 
molecular symmetry. In the following, radial parts of 
these model functions are used to explain curves Flnr(S) 
obtained by direct multipole analysis. 
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K C N ,  N a C N ,  K O D  and N a O D .  Neut ron  diffrac- 
t ion data  from K C N  (Rowe, Hinks,  Price & Susman,  
1973), N a C N  (Rowe et al., 1973), K O D  (Kabs,  1980) 
and N a O D  (Bleif, 1978) were first treated by direct 
multipole analysis. Direct multipole analysis calculates 
deviations of  f (og,R)  from a given sphere within a 
sphere with radius half  of  the distance between the 
neighboring ions. The parameters  of  the given sphere, 
bond lengths and mean-square  amplitudes, were taken 
from a separate fit (Table 1). The resulting curves of  the 
direct multipole analysis are the solid lines in Figs. 1-4. 
To these curves radial  parts of  the model functions 
(41), (43), (46) and (47) were then fitted within each 
multipole order separately. 

For  K C N  the experimental  data  indicate significant 
deviations f rom the spherical-ion reference model  in the 
zeroth-, fourth- and sixth-order multipole components .  
The zeroth-order  term AFoI(S) is well explained with 

Table 1. Final values of parameters for K C N ,  K O D ,  
N a C N  and N a O D  from direct multipole analysis 

KCN KOD NaCN NaOD 

Bond length 0.650 (5) c 0.12 (2) o 0.65 (I) c 0.10 (2)o 
(A) +0.550 (5)N +0.98 (2)t ~ , +0.55 (1)N +0.82 (2)D 

<u 2> (A 2) 0.061 (1) 0.120 (5) 0.070 (2) 0.154 (6) 
<U2xr> (A 2) 0.057 (1) 0.080 (3) 0.060 (2) 0.086 (3) 
r,0, 0.038 (5) - 0.035 (8) - 
r44 ~ --0.053 (3) - 0.049 (3) - 
r6~ l 0.035 (1) - - - 
R 4 --0.078 (6) -0.21 (2) 0.110 (6) --0.23 (3) 
R e 0.384 (8) --0.15 (2) - --0.12 (11) 
R s -0.14 (7) 0.58 (5) 0.23 (9) - 

f(O,~) = 1/4n + Zt RtKn(O,~o) 

FIIj ( , ~ : ~  

-Q1 

-0.2 

Cfr~) 
C N - / K C N  CN-/KCN 

F ~  J "  

IAF~ 

q, o6  o.8 I.o 
i , i i i i i 

s :  2s~_____De (~-~) 
1.2 

Fig. 1. Radial scattering amplitudes for CN- in KCN. The solid 
lines are calculated by direct multipole analysis with a spherical 
reference model (see text). The error bars refer to the statistical 
errors of the experimental structure factors. The vertical line at 
S = 1.18 (A -1) shows the cut-off of the measured reflections. 
Model curves (broken lines) are calculated from equations (41), 
(43a) and (43b) with parameters given in Table 1. 

the model  curve (43a), indicating isotropic anharmon-  
icity in the center-of-mass mot ion  of  the dipole. But 
AF0~(S ) is also very sensitive to several other effects, 
including extinction and thermal  diffuse scattering. 
Therefore, the numerical  value of  the parameter  r40 ~, 
given in Table 1, should be taken ra ther  as an 
indicat ion of  the phenomenon  than as an exact measure  
of  it. 

F,i (S) [frn) 
O.1 C N [ / N a C N  

//  

-O.1 / / 
-0.2 

/ I s I  , 

Q2 OA O6 0.8 1.O 1.2 
S = 2 .~_.____e (K1) 

Fig. 2. Radial scattering amplitudes for CN- in NaCN. The sold 
lines are calculated by direct multipole analysis with a spherical 
reference model (see text). The error bars refer to the statistical 
errors of the experimental structure factors. The vertical line at 
S = 1.21 (A -1) shows the cut-off of the measured reflections. 
Model curves (broken lines) are calculated from equations (41), 
(43a) and (43b) with parameters given in Table 1. 

, , , , , , , , , , , , i ,  , , , 

F,j (Sl (fill) O D - / K O D  
F~_~/F~ 

-0.1 

02 o4 0.6 o~8 1.o 1.2 1.4 
I , t i i i i i i i I I i ! 

._ s = 2 S ] _  in (~-I) . . . . .  

Fig. 3. Radial scattering amplitudes for OD- in KOD. The Solid 
5nes are calculated by direct multipole analysis with a spherical 
reference model (see text). The error bars refer to the statistical 
errors of the experimental structure factors. The vertical line at 
S = 1.37 (A -1) shows the cut-off of the measured reflections. 
Theoretical curves (broken lines) are calculated from equation 
(41) with parameters given in Table 1. 
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Model curves (43b) and (41) with parameter values 
7:441 = - 0 . 0 5 3  and R 4 = - 0 . 0 8  explain very well the 
fourth-order term. The sixth-order term F61(S) is very 
well explained with model curves (43c) and (41) and 
parameter values r66 ~ = - 0 . 0 3 5  and R 6 = 0.38. Since 
R 4 is negative and R 6 positive and larger, the 
orientational probability distribution of the CN-  ion 
has maxima in the [111] and symmetry-related 

direct ions and minima in the [110] and related 
directions. The maxima and minima of the trans- 
lational probability distribution are in the same direc- 
tions, but smaller. A small and negative eighth-order 
component, R s = --0.14, would indicate slight local 
minima in the [100] and related directions for the 
orientational probability distribution. 

Although both the orientational and translational 
probability distributions are anisotropic and f(O,~o) is 
slightly negative in the [110] and related directions, it 
was not possible to separate the coupling terms (46) 
and (47) from F4~(S) and F61(S), respectively. For K + 
the solid line F41(S) was positive and exceeded the 
limits of error by a factor of four. If this is real, it 
indicates a slightly larger probability of vibrations in 
the [100] and related directions. In the analysis the 
bond-length parameters r e and rN remained the same as 
in the separate fit. Compared to the results of Rowe et 
al. (1973) R 4 is now smaller, R 6 larger and, in addition, 
R s is now determined, although somewhat inaccurately. 

The results for NaCN are not consistent with the 
corresponding results for KCN. The zeroth-order terms 
AFol(S ) for CN-  and Na + are large and could not be 
well explained by any of the present model curves. It is 
therefore concluded that the data are not free from 
extinction, thermal diffuse scattering or other correc- 
tions of an isotropic nature. 

For KOD the orientational probability distribution 
of OD-  has maxima in the [ 111 ] and symmetry-related 

Fr (s) 
b.o~ 

-0.1 
~___QO.21AFO Q4 0.6" 0 . ~  1 . 0 ~  1.2 1 4 I 

S = 2 ~n--.-~--8 (~, -1 ) 

Fig. 4. Radial scattering amplitudes for OD-  in NaOD. The solid 
lines are calculated by direct multipole analysis with a spherical 
reference model (see text). The error bars refer to the statistical 
errors of the experimental structure factors. The vertical line at 
S = 1.30 (A -~) shows the cut-off of the measured reflections. 
Model curves (broken lines) are calculated from equation (41) 
with parameters given in Table 1. 

directions and minima in the [100] and related 
directions; there are in addition small local minima in 
the [110] and related directions. If R 6 = - 0 . 1 5  and 
R s = 0.58 are included as significant parameters, the 
orientational probability distribution would have max: 
ima in the [110], minima in the [113] and local maxima 
in the [100] and symmetry-related directions. 

Althoughf(0,~0) with R 4 = --0.21 is slightly negative 
in the [100] and related directions, it was not possible 
to separate the center-of-mass anharmonicity term (43) 
and the coupling term (46) from the solid line F41(S). 

In KOD the solid lines for K + did not show any 
significant deviations from the spherical-ion reference 
model. A fit gave the value R 4 = --0.35 (4) (R w = 
3.5 %) for the orientational parameter, which is slightly 
larger than the result of this analysis. 

For NaOD the results are consistent with the 
corresponding ones for KOD. Since R 6 ~ 0 and R s = 0 
the orientational motion of the OD-  dipole is slightly 
stronger in NaOD than in KOD. For Na + the solid line 
F4~(S) exceeded the limits of error by a factor of five. A 
fit gave the value R4 = --0.36 (3) (R w = 3.6%) for the 
orientational parameter in NaOD, which is slightly 
larger than the present value. Present results for the 
orientational probability distribution of the OD-  dipole 
agree with those of Bleif (1978), obtained by the 
Fourier-synthesis method. 

Conclusion. In orientationally disordered molecular 
crystals where a small linear ion is at a cubic m3m site 
orientation-translation coupling is small. In the present 
examples the main uncertainty in the calculated 
parameters comes from the thermal diffuse scattering. 

Tetrahedral body at a cubic m3m site 

A tetrahedral molecule or ion at a cubic m3m site is 
another example of a common structure among 
orientationally disordered molecular crystals. The static 
radial form factors are now 

go(S)  = 47ci14gxKu(111)jt(2zcSro), l = 3, 4, 6, 7, 8, 10, 
(50) 

up to l = 10. In the structure factor lowest-order terms 
deriving their origin from the uncorrelated probability 
distribution are 

R ti  t exp (-½b 2 S 2) gxJt(2zcSro ) KII(Os,~Os), 
l = 4 , 6 , 8 , 1 0 ,  (51) 

where b = 2re(u2) ~/2 and R l = (8zc2/2l + 1) 4zcK/l(111) 
all.  The a]x are expansion coefficients o f f ( w )  in the 
cubic rotator basis: 

f ( w )  = • a~l C~l ((/)). (52) 
l 

Lowest-order terms deriving their origin from the 
anharmonic translational probability distribution are 
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B, exp (-½b 2 S 2 ) { ~ - ~ b  2 S 2 + ½b 4 S 4 } 

x {gy + 4gxJo(2zrSro)} Kol(Os,q~s), (53a) 

B 2 exp (-½b z S 2) b 4 S4{gy + 4gxJo(2z~Sro)} K41(Os,COs) 

(53b) 

B 3 exp (-½b 2 S 2) b 6 S6{gy + 4gxJo(2rcSro)} K61(Osdos) , 

(53c) 

where B 1 = r401 7~V~2(<U2>I/2) 3, B 2 ---- ~'4417ZV/2(<U2>l/2) 3 
and B 3 - -r6617rX/2((u2)l/2) 3. The first coupling terms 
are the same as for a linear ion at a cubic (m3m) site: 

RTI  exp (-½b 2 S 2) bS 4gxJ3(27~Sr o) K4~[OsgOs), (54) 

R T  2 exp (-½b 2 S 2) bS 4gxJ7(2zcSro) K6l(Os,tOs), (55) 

R T  3 exp (-½b 2 S 2) bS 4gxjT(2zrSro) Ksl(Os,~Os), (56) 

where R T1, R T2 and R T 3 are again different linear 
combinations of the multipole expansion coefficients of 
f(og, R). 

The first quadratic coupling term, h = t = 2, in the 
center-of-mass displacements comes from the product 

Z 22,¢4~,tY2uv(Os,~Os) Y4,,(Osgos) 
ul~nr 

= fl, K,,(Os,tp s) + fl2K6,(Os,~Os). (57) 

In the structure factor the corresponding terms are 

R T  4 exp (-½b 2 S 2) b 2 S 2 4gxJ4(ZzcSro) K4t(Osgos), (58) 

R T  5 exp (-½b 2 S 2) b 2 S 2 4gxJ4(2zCSro) K6~(Os,~Os). (59) 

In the following, results from direct multipole analysis 
are explained by the radial parts of these model 
functions. 

CBr 4. The solid lines in Fig. 5 are results from direct 
multipole analysis of the neutron diffraction data of 
More, Lefebvre, Hennions, Powell & Zeyen (1980). 
Reflexions with F °bs = 0 have been omitted, since they 
are not informative in direct multipole analysis. 
Reflexions 200 and 111 were omitted because of 
extinction. Inclusion of these reflexions would make the 
zeroth- and fourth-order terms AF0~(S ) and F41(S) 
slightly larger. 

It is obvious from the results that the experimental 
data indicate significant deviations from the spherical- 
ion reference model only in the fourth- and sixth-order 
multipole components. Model curves (53) and (54) 
together, with parameter values r44~ = -0 .003  and R T~ 
= 0.12, explain very well the fourth-order component 
F41(S). Since r44 ~ is negative the center-of-mass 
vibrations have slightly larger probability in the [100] 
and symmetry-related directions. The presence of the 
R TI term indicates that in these directions the center- 
of-mass motion is coupled to rotations of the molecule. 
Probably through this coupling the molecule avoids the 
sterically impossible [ 111 ] orientation. Inclusion of the 

fourth-order orientational term (51) did not improve the 
present explanation of the observed F41(S) term. 

The sixth-order component F61(S ) is rather well 
explained by the model curve (51) alone, with 
parameter a~l = -0 .00167.  The small difference 
between the maximum of the model curve and the solid 
line would indicate a small change in the bond length. 
The explanation of the fourth-order component does 
not, however, support this. Since a6n is negative, the 
orientational probability distribution has maxima in the 
[ 110] and minima in the [ 111 ] and symmetry-related 
directions. With respect to the positivity condition of 
f ( w ) ,  the absolute value of a~l is large, but does not 
indicate orientation-translation correlations; it may 
indicate intermolecular angular correlations. Since the 
molecule is rather large, oscillations of the zeroth-order 
term may now also indicate non-rigidity of the 
molecule. 

Compared to the results of Press et al. (1979) and 
More et al. (1980) a~ and al~ are now zero, within the 
limits of the statistical accuracy of the data. The first 
difference comes from the center-of-mass anharmon- 
icity, the second difference is obvious. The absolute 
value of the sixth-order orientational parameter is now 

Bj (sl(~m) . . . . . .  

0.41- CBr4 

°21 

O.1 

-O.1 ~ ~ A Q 1 0 . 2 0 . ~  O.40.50.6 O.8 
s= 2~.~____e (~-~) 

Fig. 5. Radial scattering amplitudes for CBr 4. The solid lines are 
calculated by direct multipole analysis with a spherical reference 
model (see text). The error bars refer to the statistical errors of 
the experimental structure factors. The cut-off value of the 
measured reflections is S = 0-90(A-l). Theoretical curves 
(broken lines) are calculated from equations (51), (54) and (53b) 
with parameters given in Table 2. 
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larger than was reported in these two works. Press et aL 
(1979) included also or ienta t ion- t ransla t ion cor- 
relations. Their value for R T 1 agrees, within the limits 
of  error, with the present value. 

NH4C1 and N D 4 N O  3. Direct  multipole analysis  
results for NH4CI (Kurki-Suonio,  Merisalo, Vah- 
vaselk~i & Larsen,  1976) and for N D 4 N O  3 (Ahtee et 
al., 1979) are given in Table 2 for comparison.  Clearly 
the corresponding model  curves cannot  be improved by 
including the center-of-mass anharmonic i ty  and coup- 
ling. For  CBr4, NH4 + and ND4 + and libration ampli tude 
was est imated using the formulas  given by Ahtee et aL 
(1979). The a ~  values for CBr4 and NH4 + are not 
consistent with one libration amplitude. Therefore the 
(02)  u2 given for them is only a rough estimate. 

Planar triangular ion at 3m site 

The static radial  form factors of  a rigid planar  
triangle ~]m2 are 

gtmp(S) = 4rd 13gxYtmp(h o ko lo)Jl(2ZcSro), 

Imp = (l + 2j, 3#, + ) (60) 

In the structure factor, lowest-order terms deriving their 
origin from the anisotropic t ranslat ional  probabil i ty 
distribution of  the triangle are 

B~ exp (-½b 2 $2){~ - b 2 S 2 }{gy + 3gxJo(27rSro)} 

x Yoo+(Os,~Os), (6 la )  

B 2 exp (-½b 2 S 2) b 2 S2{gy + 3gxJo(ZrcSro) } Y2o+(Os,CPs), 

(61b) 

B3exp  ( -½b 2 S2 )b  4 S4{gy + 3gxJo(27rSro)} y43+(Os,q~s); 

(61c) 

where b = 2zr(u2) 1/2, B l = -z2o0+ z~V/2((u2)l/2) 3, B 2 = 
--27220+ ~W/2((u2)l/2) 3, B3 "-" 27443+ ~/7-2((R2)1/2) 3" Terms  

deriving their origin from the uncorrelated probabil i ty 
distribution of  the triangle are 

Table 2. Final values o f  parameters f o r  CBr 4 and 
corresponding results for  NH4C1 (Kurki-Suonio et al., 
1976) and for  N D 4 N O  3 (Ahtee et aI., 1979) f rom direct 

multipole analysis 

Bond length 
(A) 

(u 2 ) (A ~) 
T44! 
a]~ 

all 

RT~ 
Rr2 
(Oh '~ (o) 

CBr 4 NH + ND + NO~ 

1.92 (I) 1.050 (5) 0.99 (1) 1.23 (1) 

0.185(2) 0.025(1) 0.146(1) 0.181(1) 
-0.0010 (3) - - - 

- --0.00286 (6) --0.0028 (5) --0.0048 (5) 
-0.00167 (8) -0.00250 (8) 0.001 (2) 0.002 (2) 

- 0.0041 (3) 0.0003 (3) 0.0004 (4) 
-0.0005 (4) --0.0027 (4) - - 

0.12 (2) - - - 
0.006 (5) - - - 

16 (2) 7 (2) 22 (2) - 
(from a~,) (from al °) (from a41) 

f(tn) = Yt all C]1 (w). 

RtnreX p ( -½b 2 S z) 3gxJt(2rgSro)Ytnr(Os,~Os), (62) 

where 

Rln r - -  (327ra/2l + 1) i I ~. Ylmp(ho k o lo) t a,r,,p. (63) 
mp 

i anrmp are expansion coefficients o f f ( w )  in the non- 
cubic-site - non-cubic-body rotator basis (cf. I) 

f ( w ) =  ~. anrm Ctnrmp(W). (64) 
lnrmp 

Because of  the low body symmet ry  only the z a0+0+, 
a0+0+a and a3+0+4 terms can be solved numerical ly  f rom 
the Rtn r values. 

The first coupling term comes from the product  

Z i 
1 lUlF4 nrO+ Yluv(OS ' (ffS) Ylnr(~S, (ffS) = a l YO0+ (Os, (~S) 

Htll)r 

+ aEYEo+(Os4Ps), (65) 

where a l and a 2 are different linear combinat ions  of the 
t three possible ~uvAn,~+ coefficients. In the structure 

factor the corresponding terms are 

R T  I exp (-½b 2 S 2) bS 3gxjl(2zrSro)Yoo+(Os,q~s) (66) 

RT2 exp (-½b 2 S 3) bS 3gxj~(2zcSro) Y2o+(Os,~Os). (67) 

In the following, radial  parts of  these model  
functions are used to explain the solid lines of Fig. 6 
obtained by direct multipole analysis.  

%(s: f ro)  . . . . . . . . . . . . . . . .  

3 F2°>" N O ~ / R b N O  3 
+ 

2 

1 
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o 

s = ~ ( K  ~ ) 

Fig. 6. Radial scattering amplitudes for NO~ in RbNO r The solid 
lines are calculated by direct multipole analysis with a spherical 
reference model (see text). The error bars are b-t" the order of the 
line width. The vertical line at S = 1.10 (A -1) shows the cut-off 
of the measured reflections. Theoretical curves (broken lines) are 
calculated from equations (61a), (61b), (62) and (67) with 
parameters given in Table 3. The curves are drawn with 
max {Ytnr } = 1 normalization. 
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Table 3. Final values of  parameters for RbNO a from 
direction multipole analysis 

NO~- N O ~  NO~- 

Bond length 1.24 (I) a02+o+ 0.0060 (2) R60 + - 1.73 (2) 
(A) ag+0 ÷ 0.0080 (I) R63 ÷ 0.015 (1) 

(u 2) (A 2) 0.101 (I) a~+o+ -0.00224 (I) R66 + -0.0002 (1) 
r,00 ÷ 0- 224 R T I - 
r22o+ 0 . 3 5 8  ( 2 8 )  R T  z 0 . 1 5  (1)  
r443. 0.0053 (4) 

f ( o . ) )  Zlmpnr i t = ampnr Cmpnr(°)), 

where Rtm ~ = (32n3/2/+ 1)i t Z,rYt,r(100)a~,p,r. 

RbNO3. Neutron diffraction data from rhombohed- 
ral RbNO 3 has been analyzed by Ahtee, Kurki-Suonio 
& Vahvaselk~i (1981). The four most significant terms 
of their direct multipole analysis, with a spherical-ion 
reference model, are given in Fig. 6. Parameter values 
are given in Table 3. 

Model curve (61a) with r20o+ = 0.224 explains the 
zeroth-order term only up to S = 0.35 (A-') .  Inclusion 
of the coupling term does not improve the fit. It is 
probable that this large zeroth-order term is a con- 
sequence of thermal diffuse scattering. . .  _ 

Model curves .(61b), (62) and (67) with parameters 
r22o+ = 0.358, R20+ = 0.37 and RT2 -- 0.15 explain 
very well the second-order term. The r220+ term 
indicates that the center-of-mass vibrations are aniso- 
tropic, with the principal axis of the thermal ellipsoid 
along the z axis. The presence of R20+ and R T  2 terms 
together with r220+ shows that librations of the triangle 
depend on its position along the z axis. 

The fourth-order term F4a+(S ) is very well explained 
by model curves (62) and (6 lc) with parameters R43+ = 
0.067 and ~'443+ "-- 0 " 0 0 5 ,  respectively. The term r443+ 
indicates that the center-of-mass vibrations are slightly 
anisotropic also in the xy plane. 

All other solid lines are explainable by model curves 
(62) and related orientational parameters. 

Compared to the results of Ahtee et aL (1981) the 
present analysis gives more detailed information about 
the time-averaged thermal behavior of the NO~ ion. In 
particular, orientational parameters are now separated 
from those describing translations and from those 
describing coupling between these two. The main new 
information comes from the observed coupling and 
related anisotropy of vibrations. 

6. Discussion and conclusions 

This work differs in three aspects from the work of 
Press et al. (1979), where rotation-translation coupling 

was  studied for orientationally disordered molecules at 
cubic sites. Firstly, here coupling is treated for all body 
and site symmetries. Secondly, center-of-mass anhar- 
monicities are here included. And thirdly, and most 

importantly, the present method, symmetrized multi- 
pole formalism, is formulated for use with direct 
multipole analysis. Since the number of parameters, in 
the presence of coupling and anharmonicities, is large, 
the last difference is of crucial importance. In a normal 
fit there are more than ten parameters and they are 
strongly correlated. For example, in NaOD R4 and R 7'1 
were correlated with element - 0 . 9 8  in the normalized 
correlation matrix. With 18 data points the resulting 
R~ = 2.9% is not significantly better, at the 0.005 level 
(Hamilton, 1965), than R w = 3.6% found without the 
R T, term. A normal fit was also tried in the other 
examples with similar difficulties. 

In the direct multipole analysis we only need to 
explain the radial scattering amplitudes within each 
multipole order separately; and there the number of 
parameters, even in the presence of coupling and 
vibrational anisotropy, is seldom larger than four. In 
the direct multipole analysis we are thus interested in 
the relationship between the radial multipole 
coefficients of the static and dynamic form factors. In 
the symmetrized multipole formalism the multipole 
expansion coefficients of the total rigid body dis- 
tributionf(og, R) are parameters mediating this relation- 
ship. In favourable cases it is a simple relation between 
radial terms of the same multipole order. In the 
uncorrelated situation this is the case for nearly- 
angle-independent distribution f(og) and for nearly 
isotropic translational probability distribution r(R). In 
the presence of coupling, and for vibrational an- 
isotropy, the multipole order between these radial terms 
is mixed. Because of this the multipole expansion 
coefficients of the correlated part of f(oo, R) are not 
separable. Coupling affects the radial behavi0ur of tile 
scattering factors in some multipole orders, and this 
can b e  observed by the present method, but this 
information cannot be transferred or packed in the 
probability distribution. 

For the convergence of the correlated part of the 
dynamic structure factor both high body and high site 
symmetry are important for two reasons. Firstly, the 
order of the spherical Bessel functions entering into the 
form factor, which come from the Fourier transform of 
the static density, is high for high body symmetries. 
Secondly, the number of different coupling terms in the 
structure factor is low for high site symmetries. 
Moreover, the coupling term in the structure factor is 
proportional to an exponent of the mean-square 
amplitude and this exponent is one for low body 
symmetries. 

One can thus expect, a priori, that coupling is 
important in orientationally disordered molecular 
crystals with low site and low body symmetries where 
the mean-square amplitude of the center-of-mass 
motion is large. But, naturally, the ultimate sig- 
nificance of coupling is determined by the actual 
physical situation. 
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In the present examples coupling was observed only 
in CBr 4 and RbNOa. It seems that the main remaining 
uncertainty, in the examples, comes from the thermal 
diffuse scattering. It certainly has some effect on the 
values of the present parameters, at least for isotropic 
ones. 

Clearly, the next step forward, in the interpretation 
of molecular motion in orientationally disordered 
crystals, would be the study of the effect of inter- 
molecular orientatlonal correlations. 
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APPENDIX 

Site-symmetric coupling term 

The correlated part of F(S) is 

htuvhnrmpYtuv(OS,CPS) Ylnr(Os,q~s), (A 1) 
uvnr 

where l :/: 0 or t 4= 0. Indices t and l determine the 
order of magnitude of the coupling term. For t = 1 
orientations are coupled to center-of-mass displace- 
ments linear in R, for t = 2 quadratically via R 2, and 
so on. Index l, determined by the body symmetry, 
determines the spherical Bessel function entering into 
the coupling term through glmp(S). 

From the coupling rule for the spherical harmonic, 
with Clebsch-Gordon coefficients as determined by 
Rose (1957, § 10), the product term (A 1) can be written 

~. 1 1)(21 + 1)/8n(2s + 1) htuv A nrmps[ ( 2t + 
uvnr 

x (1 + 3uO)(1 + 6no)] v2 

x c(tls;O0) p[(1 + 3u+n,o) v2 c(tls;un) Ys,u+n,vr(Os,~Ps) 

+ r(--1)n(1 + 3u_,,,o) v2 c ( t l s ; u -  n)Ys,u_,,,vr(Os,cPs)], 

where p = - 1 for v = r = - ,  otherwise p = + 1, I t - l I 
_< s ___ t + I and t + I + s = even. The last parity rule 
follows from the fact that c(tls;O0) =/= 0 only for t + I + 
s = even. 

Now the coupling term, and the corresponding part 
o f f (w,R) ,  is site symmetric when the site-symmetric- 
index picking rules are applied to Ys,~+n,v, and to 
Ys,u-n,vr, within the parity rule. 

For cubic site symmetries, the real spherical har- 
monics combine further to cubic harmonics (eft I). 
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